Physics-Based Learned Design: Optimized Coded-Illumination for Quantitative Phase Imaging
نویسندگان
چکیده
منابع مشابه
Coded aperture pair for quantitative phase imaging.
This Letter proposes a novel quantitative phase-imaging approach by optically encoding light fields into a complementary image pair followed by computational reconstruction. We demonstrate that the axial intensity derivative for phase recovery can be well estimated by a coded-aperture image pair without z axial scanning. The experimental results demonstrate that our approach can achieve higher ...
متن کاملIllumination coherence engineering and quantitative phase imaging.
Partially coherent illumination provides significant advantages such as speckle-free imaging and enhanced optical sectioning in optical microscopy. The knowledge of the spatial and temporal coherence is crucial to obtain accurate quantitative phase imaging (QPI) of specimens such as live cells, micrometer-sized particles, etc. In this Letter, we propose a novel technique for illumination cohere...
متن کاملQuantitative phase imaging with partially coherent illumination.
In this Letter, we formulate a mathematical model for predicting experimental outcomes in quantitative phase imaging (QPI) when the illumination field is partially spatially coherent. We derive formulae that apply to QPI and discuss expected results for two classes of QPI experiments: common path and traditional interferometry, under varying degrees of spatial coherence. In particular, our resu...
متن کاملActive illumination using a digital micromirror device for quantitative phase imaging.
We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase-imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident a...
متن کاملOptimized Coil Design for Parallel Imaging
INTRODUCTION: Parallel MRI utilizes multiple RF receiver coils as encoding engines, whereby the spatial sensitivity profiles of these coils is used in unison with phase encoding to obtain higher accelerations with reduced folding artifacts. The current state-of-the-art in electronics and manufacturing allows construction of coil arrays with a greater and greater number of similarly shaped coil ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Computational Imaging
سال: 2019
ISSN: 2333-9403,2334-0118,2573-0436
DOI: 10.1109/tci.2019.2905434